Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.550
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 656: 124086, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580074

RESUMO

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.


Assuntos
Portadores de Fármacos , Ivermectina , Lipídeos , Nanoestruturas , Humanos , Ivermectina/administração & dosagem , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/farmacologia , Animais , Portadores de Fármacos/química , Lipídeos/química , Células K562 , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Sinergismo Farmacológico , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Limoninas/administração & dosagem , Limoninas/farmacologia , Limoninas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Ratos
2.
Biomed Pharmacother ; 174: 116541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565063

RESUMO

BACKGROUND: Hypertension, a highly prevalent chronic disease, is known to inflict severe damage upon blood vessels. In our previous study, isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), exhibits antihypertensive and vascular smooth muscle proliferation-inhibiting effects, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare isoliensinine loaded by PEG-PLGA polymer nanoparticles to increase its efficacy METHOD: We synthesized and thoroughly characterized PEG-PLGA nanoparticles loaded with isoliensinine using a nanoprecipitation method, denoted as, PEG-PLGA@Isoliensinine. Additionally, we conducted comprehensive investigations into the stability of PEG-PLGA@Isoliensinine, in vitro drug release profiles, and in vivo pharmacokinetics. Furthermore, we assessed the antihypertensive efficacy of this nano-system through in vitro experiments on A7R5 cells and in vivo studies using AngII-induced mice. RESULT: The findings reveal that PEG-PLGA@Isoliensinine significantly improves isoliensinine absorption by A7R5 cells and enhances targeted in vivo distribution. This translates to a more effective reduction of AngII-induced hypertension and vascular smooth muscle proliferation. CONCLUSION: In this study, we successfully prepared PEG-PLGA@Isoliensinine by nano-precipitation, and we confirmed that PEG-PLGA@Isoliensinine surpasses free isoliensinine in its effectiveness for the treatment of hypertension, as demonstrated through both in vivo and in vitro experiments. SIGNIFICANCE: This study lays the foundation for isoliensinine's clinical use in hypertension treatment and vascular lesion protection, offering new insights for enhancing the bioavailability of traditional Chinese medicine components. Importantly, no toxicity was observed, affirming the successful implementation of this innovative drug delivery system in vivo and offers a promising strategy for enhancing the effectiveness of Isoliensinine and propose an innovative avenue for developing novel formulations of traditional Chinese medicine monomers.


Assuntos
Anti-Hipertensivos , Liberação Controlada de Fármacos , Hipertensão , Isoquinolinas , Polietilenoglicóis , Animais , Hipertensão/tratamento farmacológico , Polietilenoglicóis/química , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Masculino , Isoquinolinas/farmacologia , Isoquinolinas/administração & dosagem , Isoquinolinas/química , Isoquinolinas/farmacocinética , Ratos , Camundongos , Nanopartículas/química , Linhagem Celular , Sistemas de Liberação de Fármacos por Nanopartículas/química , Ratos Sprague-Dawley , Portadores de Fármacos/química , Pressão Sanguínea/efeitos dos fármacos , Poliésteres/química
3.
Int J Pharm ; 656: 124096, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38583821

RESUMO

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Assuntos
Quitosana , Exossomos , Fibronectinas , Lipossomos , Fibrose Pulmonar , Piridonas , Animais , Fibronectinas/administração & dosagem , Fibrose Pulmonar/tratamento farmacológico , Exossomos/química , Quitosana/química , Quitosana/administração & dosagem , Administração por Inalação , Microesferas , Liberação Controlada de Fármacos , Masculino , Preparações de Ação Retardada , Fenantrenos/administração & dosagem , Fenantrenos/química , Fenantrenos/farmacocinética , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Ratos Sprague-Dawley , Antifibróticos/administração & dosagem , Antifibróticos/química
4.
Colloids Surf B Biointerfaces ; 237: 113858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547797

RESUMO

Herein, lipid-polymer core-shell hybrid nanoparticles composed of poly(D,L-lactic-co-glycolic acid) (PLGA)/lecithin (PLNs) were synthesized through lipid-based surface engineering. Lipids were absorbed onto the surface of the PLGA core to enhance the advantages of polymeric nanoparticles and liposomes. The amounts of lipids and encapsulation of the drug nicardipine hydrochloride (NCH) in the PLNs were studied. NCH-loaded PLNs (NCH-PLNs) were produced in high yield (66%) with a high encapsulation efficiency (92%) and a size of 176 nm. The mass of phosphorus (P) on the NCH-PLN surface was qualitatively and quantitatively investigated using X-ray fluorescence spectroscopy, and lecithin addition increased the P mass percentage due to the phosphate group (PO43-) in its structure. These data confirmed the lipid-based surface engineering of NCH-PLNs. The zeta potential of NCH-PLN exceeded -30 mV, ensuring colloidal stability, and preventing precipitation through electrostatic stabilization. In vitro, NCH was continuously and slowly released from NCH-PLNs over 16 days. Furthermore, PSVK1 cells exhibited high viability after treatment with NCH-PLNs, indicating favorable cytocompatibility. After comparing various mathematical equations of drug release kinetics, the data best fit the Korsmeyer-Peppas model with R2 values of 0.989, 0.990, and 0.982 for 1.0, 3.0, and 5.0 mg/mL lecithin, respectively. The release exponents obtained ranged from 0.480 to 0.505, suggesting anomalous transport release. Thus, NCH-PLNs have potential as a robust drug delivery platform for the controlled administration of NCH, particularly for vasodilation during neurosurgery.


Assuntos
Lipossomos , Nanopartículas , Polímeros/química , Lecitinas/química , Lipídeos/química , Ácido Láctico/química , Liberação Controlada de Fármacos , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
5.
J Colloid Interface Sci ; 661: 374-388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38306747

RESUMO

Conventional antibiotic treatment struggles to eliminate biofilms in wounds due to the formation compact barrier. Herein, we fabricate magnetic pandanus fruit-like nanorobots (NRs) that function as drug carriers while exhibit excellent maneuverability for enhanced antibacterial tasks. Specifically, zeolitic imidazolate framework-8 (ZIF-8) is self-assembled on the surface of Fe3O4 nanoparticles, loaded with a small quantity of ciprofloxacin, and covered with a layer of polydopamine (PDA). Energized by external magnetic fields, the NRs (F@Z/C/P) are steered in defined direction to penetrate the infection tissues, and effectively arrive targeted areas for pH stimulated drug release and near-infrared triggered phototherapy, contributing to an antibacterial rate of >99.9 %. The Zn2+ in ZIF-8 and the catechol group in PDA form catechol-ZIF-8-drug structures, which effectively reduce drug release by 11 % in high pH environments and promote rapid drug release by 14 % in low pH environments compared to NRs without PDA. Additionally, F@Z/C/P can remove the biofilms and bacteria in Staphylococcus aureus infected wounds, and eventually be discharged from the infected site after treatment, leading to faster healing with an intact epidermis and minimal harm to surrounding tissues and organs. The study provides a promising strategy for tackling biofilm-associated infections in vivo through the use of multi-functional NRs.


Assuntos
Pandanaceae , Liberação Controlada de Fármacos , Frutas , Antibacterianos/química , Biofilmes , Cicatrização , Concentração de Íons de Hidrogênio , Catecóis/farmacologia
6.
Int J Biol Macromol ; 262(Pt 2): 130172, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360230

RESUMO

Plant essential oils possess broad-spectral antimicrobial property, but the applications are impeded by their insolubility in water, extreme volatility, and strong irritation. Nanoparticle-stabilized emulsion (Pickering emulsion) gels are colloidal systems with ability to accommodate two immiscible phases in one system. The thick adsorption nanoparticle layers and the cross-linked networks in continuous phase could provide protective barriers for antibacterial oil and achieve on-demand controlled release. An emulsion hydrogel templated from gelatin nanoparticle-stabilized emulsion is one-pot constructed by conducting a tunable cross-linking process between oxidized dextran (Odex) and amikacin in the continuous phase and concomitantly trapping tea tree essential oil (TO) droplets in the three-dimensional network. The resulted emulsion hydrogel presents tunable gelation time, adequate mechanical strength, fascinating injectability, and self-healing capability. It is pH-responsiveness and presents controlled release of amikacin and TO, exhibiting a long-term bacteriostasis of 144 h. The emulsion hydrogel facilitates the outstanding wound healing efficiency in 14 days (95.2 ± 0.8 % of wound closure), accompanied with enhanced collagen deposition and angiogenic activities. The incorporation of TO into emulsion hydrogel system reduced its irritation and improved its biosafety, showing potential application in bacteria inhibition even as implants in vivo.


Assuntos
Amicacina , Nanopartículas , Amicacina/farmacologia , Gelatina , Dextranos , Hidrogéis , Emulsões , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Antibacterianos/farmacologia , Cicatrização
7.
Int J Biol Macromol ; 262(Pt 2): 130164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367776

RESUMO

Ultrasound (US) triggered alterations in the viscoelastic behavior of the procaine-loaded ionically gelatinized pectin hydrogel matrix, and drug release was observed using a sono-device rheometer. The gel softened immediately upon activation of the ultrasound operated at 43 kHz and remained in a softened state throughout the irradiation. Upon cessation of ultrasound, the gel promptly reverted to its original hardness. This cycle of softening was consistently observed in ionically crosslinked pectin hydrogels, resulting in the promotion of procaine release, particularly with higher US power and lower calcium concentration. As the amount of loaded procaine increased, the gel weakened due to ion exchange with the calcium crosslinker and procaine. The most substantial release efficiency, reaching 82 % with a concentration of 32 µg/ml, was achieved when the hydrogels contained 0.03 % procaine within the gelatinized hydrogel medicine at a calcium concentration of 0.9 M, representing a six-fold increase compared to that without US. Notably, US exposure affected the 3D porous structure and degradation rate, leading to hydrogel collapse and facilitating medicine release. Additionally, the procaine-loaded pectin hydrogels with 0.9 M calcium exhibited improved fibroblast cell viability, indicating non-toxicity compared to those hydrogels prepared at a higher Ca2+ concentration of 2.4 M.


Assuntos
Cálcio , Hidrogéis , Hidrogéis/química , Cálcio/química , Pectinas/química , Liberação Controlada de Fármacos , Procaína
8.
Int J Biol Macromol ; 263(Pt 1): 130376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395286

RESUMO

The aim of this study was to prepare a drug carrier that could deliver oral insulin to the intestine. A hydrogel beads composed of sodium carboxymethyl cellulose (CMC), Zingiber offtcinale polysaccharide (ZOP) and chitosan (CS) were prepared by ionic gel method as insulin carrier. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermogravimetric (TGA) showed that the hydrogel was formed by metal ion coordination between ZOP and CMC and Fe3+, and CS was coated on the surface of the hydrogel ball in the form of non covalent bond. The results showed that the swelling process of hydrogel spheres has significant pH sensitivity. In addition, the hydrogel beads successfully coated insulin, and the drug loading rate (DL) of (ZOP/CMC-Fe3+)@CS could reach 69.43 ± 7.32 mg/g, and the entrapment efficiency (EE) could reach 66.94 ± 7.43 %. In vitro release experiments, the release rate of (CMC/ZOP-Fe3+)@CS in simulated gastric fluid (SGF) for 2 h was <20 %, and the cumulative release rate of insulin after 9 h in simulated intestinal fluid (SIF) reached over 90 %. The results showed that the hydrogel beads prepared in this work could be used as a potential carrier for delivering oral insulin.


Assuntos
Compostos Azabicíclicos , Quitosana , Piperazinas , Zingiber officinale , Hidrogéis/química , Liberação Controlada de Fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Portadores de Fármacos/química , Polissacarídeos , Insulina , Concentração de Íons de Hidrogênio , Quitosana/química
9.
Adv Mater ; 36(16): e2313317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206943

RESUMO

Cancer poses a significant challenge to global public health, seriously threatening human health and life. Although various therapeutic strategies, such as chemotherapy (CT), radiotherapy, phototherapy, and starvation therapy, are applied to cancer treatment, their limited therapeutic effect, severe side effects, and unsatisfactory drug release behavior need to be carefully considered. Thus, there is an urgent need to develop efficient drug delivery strategies for improving cancer treatment efficacy and realizing on-demand drug delivery. Notably, pillararenes, as an emerging class of supramolecular macrocycles, possess unique properties of highly tunable structures, superior host-guest chemistry, facile modification, and good biocompatibility, which are widely used in cancer therapy to achieve controllable drug release and reduce the toxic side effects on normal tissues under various internal/external stimuli conditions. This review summarizes the recent advance of stimuli-responsive supramolecular delivery systems (SDSs) based on pillararenes for tumor therapy from the perspectives of different assembly methods and hybrid materials, including molecular-scale SDSs, supramolecular nano self-assembly delivery systems, and nanohybrid SDSs. Moreover, the prospects and critical challenges of stimuli-responsive SDSs based on pillararenes for cancer therapy are also discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Liberação Controlada de Fármacos
10.
Chemistry ; 30(13): e202400007, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258423

RESUMO

Modern nanodrug delivery technologies offer new approaches in the fight against cancer. However, due to the heterogeneity of tumors and side effects of anticancer drugs, monotherapies are less effective. Herein, we report a novel pH and light dual-responsive nanodrug delivery platform. The platform was formed by sulfonate-modified gold nanoparticles loaded with the anticancer drugs doxorubicin (DOX) and glucose oxidase (GOx) and then covered by water-soluble pillar[5]arene as a nanovalve. The nanovalve formed by the host-guest interaction between pillar[5]arene and the sulfonic acid group grafted onto the gold nanoparticle increased the drug loading capacity of the nanoplatform and enabled sustained release of the drug in a simulated weakly acidic tumor environment. The released GOx can consume intracellular glucose, namely, starvation therapy, while the generated hydrogen peroxide can further kill tumor cells, complementing DOX chemotherapy. Gold nanoparticles have good photothermal conversion ability and can enhance the drugs release rate under specific wavelengths of light irradiation. The results of in vitro and in vivo experiments showed that this novel nanodrug delivery platform has good biocompatibility and better therapeutic efficacy relative to monotherapy. This study successfully developed a combined chemo/starvation therapy strategy with good tumor suppression, providing a new approach for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Ouro , Fototerapia , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
11.
J Control Release ; 366: 410-424, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171472

RESUMO

The therapeutic efficacy of anticancer drugs loaded in liposomes composed of rigid phosphatidylcholine (PC) is hindered by the limited release of these drugs at the tumor site, which in turn hampers delivery of the drug to its intracellular target. In an attempt to improve the therapeutic efficacy of liposomal anticancer drugs, we here explored the use of empty liposomes as "trigger" vehicles to induce drug release from drug-loaded liposomes through liposome-liposome interactions. Empty liposomes containing PC in which omega-3 fatty acids comprised both fatty acid strands (Omega-L) showed a triggering effect on drug release from doxorubicin (DOX)-loaded liposomes (Caelyx). The effectiveness of this triggered-release effect was dependent on the Omega-L composition as well as the mixing ratio of Omega-L to Caelyx. Cryo-TEM and differential calorimetry studies revealed that the Omega-L effect was associated with liposome-liposome interactions that led to loosened membrane packing and increased fluidity of Caelyx. In cultured cells, the intracellular/intranuclear DOX uptake and anticancer efficacy of Caelyx was greatly improved by Omega-L pre-mixing. Intravenous injection of rats with Caelyx, premixed with Omega-L, decreased the area under the plasma concentration-time curve from time zero to time infinity and increased clearance without significantly changing the mean residence time or terminal half-life of DOX compared with Caelyx alone. Ex vivo bioimaging showed that DOX fluorescence in tumors, but not in other organs, was significantly increased by Omega-L premixing. In the mouse xenograft model, premixing of Omega-L with Caelyx suppressed tumor growth 2.5-fold compared with Caelyx. Collectively, the data provide preliminary evidence that the Omega-L-triggered drug release that occurs before and after dosing, particularly at tumor site, improved the therapeutic efficacy of Caelyx. The simple approach described here could enhance the therapeutic value of Caelyx and other anticancer drug-loaded liposomes.


Assuntos
Antineoplásicos , Doxorrubicina/análogos & derivados , Ácidos Graxos Ômega-3 , Neoplasias , Humanos , Camundongos , Ratos , Animais , Lipossomos/química , Ácidos Graxos Ômega-3/uso terapêutico , Liberação Controlada de Fármacos , Fosfatidilcolinas/química , Modelos Animais de Doenças , Polietilenoglicóis
12.
Int J Pharm ; 651: 123777, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181992

RESUMO

Chewable gummies are an attractive dosage form for all age groups because of their appearance and texture. Although, this dosage form has been highly preferred administering nutraceuticals, its application in the pharmaceutical sector is worth exploring. In this study, simethicone (SMT), an OTC drug prescribed for anti-flatulence was incorporated in pectin- based, low-calorie, 3D printed gummies. Semi-solid extrusion (SSE)-based 3D printing was used to dispense personalized dose of SMT i.e 40 mg for children and 125 mg for adults. Formulation optimization was carried out based on the texture profile of the gummies, using a texture analyzer. The inks were thoroughly characterized for their rheological behavior since it is a critical attribute for SSE-based 3D printing. Printing parameters like the printing speed, layer height and the type of the nozzle were optimized based on the printing accuracy achieved. The printed gummies were further evaluated for their disintegration time, drug content, weight variation, water activity and total microbial count. SSE-based 3D printing was found to be an effective tool to print pectin-based shear thinning gels for accurate drug dispensing. The texture profile of the printed gummies was comparable to the gummies prepared by conventional method as well as the marketed samples.


Assuntos
Simeticone , Veganos , Criança , Humanos , Estudos de Viabilidade , Pectinas , Impressão Tridimensional , Liberação Controlada de Fármacos , Tecnologia Farmacêutica/métodos
13.
Biofabrication ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277678

RESUMO

The inflammatory response is one of the general symptoms that accompany tumorigenesis, the pro-inflammatory factors cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandin-2 (PGE-2) in the inflammatory environment surrounding tumors possess promoting tumor development, metastasis and angiogenesis effects. In addition, the hypoxic environment of tumors severely limits the effectiveness of photodynamic therapy (PDT). In this study, a universal extracellular-intracellular 'on-demand' release nanomedicine DOX@PDA-ICG@MnO2@GN-CEL was developed for the combined fight against malignant tumors using a spatiotemporal controlled gelatin coated polydopamine (PDA@GN) as the carrier and loaded with the chemotherapeutic drug doxorubicin (DOX), the photosensitizer indocyanine green (ICG), the PDT enhancer MnO2and the anti-inflammatory drug celecoxib (CEL) individually. Our results showed that DOX@PDA-ICG@MnO2@GN-CEL could release CEL extracellularly by matrix metalloproteinase-2 response and inhibit the COX-2/PGE-2 pathway, reduce chemotherapy resistance and attenuate the concurrent inflammation. After entering the tumor cells, the remaining DOX@PDA-ICG@MnO2released DOX, ICG and MnO2intracellularly through PDA acid response. MnO2promoted the degradation of endogenous H2O2to generate oxygen under acidic conditions to alleviate the tumor hypoxic environment, enhance PDT triggered by ICG. PDA and ICG exhibited photothermal therapy synergistically, and DOX exerted chemotherapy with reduced chemotherapy resistance. The dual responsive drug release switch enabled the chemotherapeutic, photothermal, photodynamic and anti-inflammatory drugs precisely acted on different sites of tumor tissues and realized a promising multimodal combination therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Metaloproteinase 2 da Matriz , Liberação Controlada de Fármacos , Microambiente Tumoral , Ciclo-Oxigenase 2 , Compostos de Manganês , Hipertermia Induzida/métodos , Óxidos , Doxorrubicina/farmacologia , Verde de Indocianina/farmacologia , Anti-Inflamatórios , Linhagem Celular Tumoral
14.
Nanotechnology ; 35(18)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271719

RESUMO

Photothermal agent accompanying with thermally responsive materials, displays well controlled drug release property, which is well-received as an outstanding design strategy for simultaneous photothermal/chemotherapy in cancer. Cyanine dye, as the prestigious photothermal agent has shown great potential due to its preeminent near-infrared absorbance and excellent thermal conversion efficiency. However, their inherent defect such as inferior photothermal stability, high leakage risk and poor therapy efficacy limit their further application in cancer therapy. Hence, a facile and universal strategy to make up these deficiencies is developed. Chemotherapeutic drug DOX and cyanine dye were loaded into polydopamine (PDA) nanoparticles. The PDA encapsulation dramatically improved the photothermal stability of cyanine dye. Attributed by the PDA structure feature, the thermo-sensitive small molecule glyamine (Gla) is introduced into the PDA surface to lessen leakage. The Gla can form a dense encapsulation layer on the dopamine surface through hydrogen bond. This newly fabricated Cyanine/DOX@PDA-Gla nanopaltform is characterized with NIR light/pH dual-responsive property, high NIR photothermal conversion performance and fluorescence guided chemo-photothermal therapy.


Assuntos
Hipertermia Induzida , Indóis , Nanopartículas , Neoplasias , Polímeros , Humanos , Terapia Fototérmica , Doxorrubicina/química , Fototerapia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
15.
Biomacromolecules ; 25(2): 964-974, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38232296

RESUMO

Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Hipertermia Induzida/métodos , Fototerapia/métodos , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Verde de Indocianina/farmacologia , Verde de Indocianina/química , Nanotecnologia , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
16.
Drug Dev Ind Pharm ; 50(1): 23-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38079333

RESUMO

OBJECTIVE: This study aimed to develop a mixed polymeric micelle formulation incorporating candesartan cilexetil (CAND) drug to enhance its oral bioavailability for the better treatment of hypertension. METHODS: A Box-Behnken design was utilized to optimize the CAND-incorporated mixed polymeric micelles formulation (CAND-PFLC) consisting of Pluronics (P123 and F68) and lecithin (LC). The optimized CAND-PFLC micelles formulation was characterized for size, shape, zeta potential, polydispersity index (PDI), and entrapment efficiency (%EE). An in vitro release study, ex vivo permeability investigation, and an in vivo pharmacokinetic analysis were carried out to evaluate the performance of the formulation. RESULTS: The optimized CAND-PFLC micelles formulation demonstrated a spherical shape, a particle size of 44 ± 2.03 nm, a zeta potential of -7.07 ± 1.39 mV, a PDI of 0.326 ± 0.06, and an entrapment efficiency of 87 ± 3.12%. The formulation exhibited excellent compatibility, better stability, and a noncrystalline nature. An in vitro release study revealed a faster drug release of 7.98% at gastric pH in 2 hrs and 94.45% at intestinal pH within 24 hrs. The ex vivo investigation demonstrated a significantly enhanced permeability of CAND, with 94.86% in the micelle formulation compared to 9.03% of the pure drug. In vivo pharmacokinetic analysis showed a 4.11-fold increase in oral bioavailability of CAND compared to the marketed formulation. CONCLUSION: The CAND-PFLC mixed micelle formulation demonstrated improved performance compared to pure CAND, indicating its potential as a promising oral drug delivery system for the effective treatment of hypertension.


Assuntos
Benzimidazóis , Compostos de Bifenilo , Hipertensão , Micelas , Tetrazóis , Humanos , Poloxâmero/química , Lecitinas , Disponibilidade Biológica , Anti-Hipertensivos , Administração Oral , Liberação Controlada de Fármacos , Polímeros/química , Portadores de Fármacos/química , Tamanho da Partícula
17.
J Mater Chem B ; 12(4): 952-961, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37975827

RESUMO

The development of multifunctional nanohybrid systems for combined photo-induced hyperthermia and drug release is a challenging topic in the research of advanced materials for application in the biomedical field. Here, we report the first example of a three-component red-light-responsive nanosystem consisting of graphene oxide, gold nanoparticles and poly-N-isopropylacrylamide (GO-Au-PNM). The GO-Au-PNM nanostructures were characterized by spectroscopic techniques and atomic force microscopy. They exhibited photothermal conversion effects at various wavelengths, lower critical solution temperature (LCST) behaviour, and curcumin (Curc) loading capacity. The formation of GO-Au-PNM/Curc adducts and photothermally controlled drug release, triggered by red-light excitation (680 nm), were demonstrated using spectroscopic techniques. Drug-polymer interaction and drug-release mechanism were well supported by modelling simulation calculations. The cellular uptake of GO-Au-PNM/Curc was imaged by confocal laser scanning microscopy. In vitro experiments revealed the excellent biocompatibility of the GO-Au-PNM that did not affect the viability of human cells.


Assuntos
Curcumina , Grafite , Hipertermia Induzida , Nanopartículas Metálicas , Humanos , Polímeros/química , Ouro , Linhagem Celular Tumoral , Luz Vermelha , Liberação Controlada de Fármacos , Hipertermia Induzida/métodos , Curcumina/química
18.
Int J Pharm ; 649: 123667, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048890

RESUMO

Galangin (Gal) is a natural plant flavonoid. More and more evidence shows that Gal can achieve anti-tumor effects by regulating various mechanisms. However, its poor water solubility, low bioavailability, and insufficient lesion targeting limit its clinical application. To overcome these shortcomings, we designed and developed a mesoporous nanosystem (GE11-CuS) that actively located the target area and photo-controlled drug release, which promoted the rapid accumulation of drugs in tumor tissues under NIR irradiation, thus achieving positive effects against cancer. In this study, we explored the application of the Gal-loaded nanometer system (GE11-CuS@Gal) in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. The results exhibited that GE11-CuS@Gal had excellent targeting ability and could accumulate efficiently in tumor cells (HSC-3). Meanwhile, the temperature of GE11-CuS@Gal increasing rapidly under NIR illumination damaged the integrity of the carrier and allowed Gal molecules to escape from the pores of the nanoparticles. When the accumulation of Gal in the nidus reached a certain level, the intracellular ROS level could be significantly increased and the antioxidative stress pathway mediated by Nrf2/OH-1 was effectively blocked, to inhibit the growth and migration of tumors. In conclusion, the GE11-CuS improved the antitumor activity of Gal in the body, which laid a foundation for the treatment of OSCC with traditional Chinese medicine ingredients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanopartículas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Liberação Controlada de Fármacos , Neoplasias Bucais/tratamento farmacológico , Flavonoides , Cobre
19.
Int J Biol Macromol ; 259(Pt 1): 128875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154719

RESUMO

The utilization of biocompatible drug delivery systems with extended drug release capabilities is highly advantageous in cancer therapy, as they can mitigate adverse effects. To establish such a biocompatible system with prolonged drug release behavior, researchers developed an innovative drug carrier. In this study, a sustainable approach was employed to synthesize a new zinc-based metal-organic framework (Zn-MOF) through the reaction between synthesized Schiff base ligands and zinc ions. Comprehensive analyses, including FT-IR, XRD, SEM, BET surface area, and TGA techniques, were employed to thoroughly characterize the frameworks. Following comprehensive characterization, curcumin (CUR) was loaded onto the Zn-MOF, resulting in CUR entrapment efficiency and loading capacity of 79.23 % and 26.11 %, respectively. In vitro evaluations of CUR release from CUR@MOF exhibited controlled release patterns, releasing 78.9 % and 50.0 % of CUR at pH 5.0 and pH 7.4, respectively. To mitigate initial burst release, a coating of the biopolymer sodium alginate (SA) was applied to CUR@Zn-MOF. In vitro CUR release tests indicated that SA/CUR@Zn-MOF outperformed pristine CUR@Zn-MOF. The release of CUR conformed to the Korsmeyer-Peppas model, displaying non-Fickian diffusion. Furthermore, an in vitro cytotoxicity study clearly demonstrated the potent anti-tumor activity of the synthesized CUR@Zn-MOF attributed to its controlled release of CUR. This led to the induction of apoptotic effects and cell death across HeLa, HEK293, and SH-SY5Y cell lines. These findings strongly suggest that the developed pH-sensitive carriers hold remarkable potential as targeted vehicles for drug delivery in cancer therapy.


Assuntos
Curcumina , Estruturas Metalorgânicas , Neuroblastoma , Humanos , Curcumina/química , Estruturas Metalorgânicas/química , Preparações de Ação Retardada , Alginatos , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Neuroblastoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Zinco , Liberação Controlada de Fármacos
20.
ACS Macro Lett ; 13(1): 58-64, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38153092

RESUMO

The development of drug delivery systems with real-time cargo release monitoring capabilities is imperative for optimizing nanomedicine performance. Herein, we report an innovative self-reporting drug delivery platform based on a ROS-responsive random copolymer (P1) capable of visualizing cargo release kinetics via the activation of an integrated fluorophore. P1 was synthesized by copolymerization of pinacol boronate, PEG, and naphthalimide monomers to impart ROS-sensitivity, hydrophilicity, and fluorescence signaling, respectively. Detailed characterization verified that P1 self-assembles into 11 nm micelles with 10 µg mL-1 CMC and can encapsulate hydrophobic curcumin with 79% efficiency. Fluorescence assays demonstrated H2O2-triggered disassembly and curcumin release with concurrent polymer fluorescence turn-on. Both in vitro and in vivo studies validated the real-time visualization of drug release and ROS scavenging, as well as the therapeutic effect on osteoarthritis (OA). Overall, this nanotheranostic polymeric micelle system enables quantitative monitoring of drug release kinetics for enhanced treatment optimization across oxidative stress-related diseases.


Assuntos
Curcumina , Osteoartrite , Humanos , Polímeros , Espécies Reativas de Oxigênio , Curcumina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Autorrelato , Peróxido de Hidrogênio , Sistemas de Liberação de Medicamentos , Micelas , Osteoartrite/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA